
Towards Practical Protocol Verification
via Minimal Orchestration in ACP

Bas van den Heuvel
Jorge A. Pérez

University of Groningen
Groningen, The Netherlands

Summary. We report ongoing work on the analysis of the
protocols that pervade concurrent and distributed software.
These protocols are key to ensure that communicating pro-
grams interact correctly, without communication errors and
deadlocks. We focus on multiparty session types (MPST) [4],
an approach that uses governing multiparty protocols as
types to verify the correctness of message-passing programs.
Rather than the 𝜋-calculus, we target the verification of pro-
grams by relying on ACP (the Algebra of Communicating Pro-
cesses) [1] as specification language; rather than typing, we
aim to adopt model checking using the mCRL2 toolset [2, 3].

A Motivating Example. Consider a protocol between
participants Alice, Bob, and Coin. The protocol specifies a
coin flipping game between Alice and Bob: Alice picks either
heads or tails and Bob flips a Coin; if Alice guessed correctly,
they win and try again.
In MPST, protocols are specified as global types. The fol-

lowing global type expresses our coin flipping game with
participants 𝑎 (Alice), 𝑏 (Bob), and 𝑐 (Coin):

𝐺 := 𝜇𝑋 .𝑎↠𝑏


heads⟨int⟩.𝑐 ↠ 𝑏

{
heads.𝑏 ↠ 𝑎{win.𝑋 },
tails.𝑏 ↠ 𝑎{lose.end}

}
,

tails⟨int⟩.𝑐 ↠ 𝑏

{
heads.𝑏 ↠ 𝑎{lose.end},
tails.𝑏 ↠ 𝑎{win.𝑋 }

}
The global type 𝐺 defines a recursive protocol (𝜇𝑋). First, 𝑎
sends to 𝑏 (𝑎 ↠ 𝑏) a choice between the labels “heads” and
“tails” along with an integer bet (⟨int⟩). In both cases, 𝑐 sends
to 𝑏 a choice between “heads” and “tails”. Then, 𝑏 sends to
𝑎 the label “win” or the label “lose”, dependending on the
initial choice by 𝑎 and the consecutive choice by 𝑐 . In the
“win” cases, the protocol repeats by means of a recursive call
(𝑋), and in the “lose” cases, the protocol ends (end).

MPST uses global types to verify the correctness of the
implementation of protocol participants as distributed pro-
cesses that communicate asynchronously. In this context, a
participant’s process implementation is correct if it satisfies
all of protocol fidelity (the process acts as stipulated by the
protocol), communication safety (no errors or mismatches
in messages), and deadlock freedom (the process never gets
stuck waiting for another process).

AGERE, 2021, Chicago, Illinois, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Our Proposed Approach. We aim to verify the correct-
ness of participant implementations bymeans ofmodel check-
ing. Our innovation is the use of ACP as the specification
language, allowing us to use mCRL2 to verify that participant
implementations conform to the given global protocol.
Unlike approaches based on the 𝜋-calculus, processes in

ACP are allowed to interact by a communication function,
which defines synchronizations of parallel actions. For ex-
ample, a communication function that maps “𝑎[ℓ]

�� 𝑏 (ℓ) ↦→
𝑎𝑏⟨ℓ⟩” says that 𝑎[ℓ] and 𝑏 (ℓ) may synchronize to perform
action 𝑎𝑏⟨ℓ⟩. Processes can be encapsulated to force these
synchronizations, e.g. disabling the actions 𝑎[ℓ] and 𝑏 (ℓ)
from being performed by themselves, forcing a synchroniza-
tion as 𝑎𝑏⟨ℓ⟩. In ACP, there is no concept of “output” or
“input”; we refer to actions of the forms 𝑎[. . .], 𝑏 (. . .), and
𝑎𝑏⟨. . .⟩ as outputs, inputs, and communications, respectively.

One key idea is to extract the communication function
from a given global type and use it to orchestrate the in-
teractions between participant implementations. By forcing
specific synchronization actions derived from the global type,
we ensure that participant implementations communicate
following the intended protocol. We argue that this orches-
tration is minimal, in the sense that it is the least amount
of intervention necessary to ensure protocol fidelity, while
avoiding synchronizations with a centralized component.
Indeed, in our approach, the orchestrator is not an additional
component but is subsumed by the communication function.

For this to work, we number each exchange in the global
type in depth-first order. In 𝐺 , this would work as follows:

𝜇𝑋 .𝑎
1
↠ 𝑏


heads⟨int⟩.𝑐

2
↠ 𝑏

{
heads.𝑏

3
↠ 𝑎{win.𝑋 },

tails.𝑏
4
↠ 𝑎{lose.end}

}
,

tails⟨int⟩.𝑐
5
↠ 𝑏

{
heads.𝑏

6
↠ 𝑎{lose.end},

tails.𝑏
7
↠ 𝑎{win.𝑋 }

}


Each output and input action by a participant implementa-
tion should then be annotated with the number of the associ-
ated global exchange. In𝐺 , the action for, e.g., 𝑎’s initial out-
put of label “heads” and integer 42 should be 𝑎1 [heads, 42].
The following are example ACP implementations 𝑃 , 𝑄 ,

and 𝑅 of 𝑎, 𝑏, and 𝑐 in 𝐺 , respectively:

𝑃 := 𝑎1 [heads, 42] . (𝑎3 (win) . 𝑃 + 𝑎4 (lose))
+ 𝑎1 [tails, 5] . (𝑎6 (lose) + 𝑎7 (win) . 𝑃)

https://orcid.org/0000-0002-8264-7371
https://orcid.org/0000-0002-1452-6180
https://doi.org/10.1145/nnnnnnn.nnnnnnn

AGERE, 2021, Chicago, Illinois, USA Bas van den Heuvel and Jorge A. Pérez

𝑄 :=
∑

𝑥 ∈Z 𝑏1 (heads, 𝑥) .
(
𝑏2 (heads) . 𝑏3 [win] . 𝑄
+ 𝑏2 (tails) . 𝑏4 [lose]

)
+∑

𝑥 ∈Z 𝑏1 (tails, 𝑥) .
(
𝑏5 (heads) . 𝑏6 [lose]
+ 𝑏5 (tails) . 𝑏7 [win] . 𝑄

)
𝑅 := 𝑐2 [heads] . 𝑅 + 𝑐2 [tails] + 𝑐5 [heads] + 𝑐5 [tails] . 𝑅

Processes consist of actions (𝑎1 [. . .]), non-deterministic choices
(+) between subprocesses, and sequential compositions (.)
of subprocesses. A process recursively loops by referring
to its identifier, such as in 𝑃 . The sum (

∑
) in 𝑄 defines a

non-deterministic choice over a (possibly infinite) set.
To fully implement𝐺 in ACP, we derive a communication

function 𝛾 from 𝐺 . For each protocol exchange, 𝛾 defines a
synchronization between (i) a properly numbered output ac-
tion by the sender and (ii) a properly numbered input action
by the recipient. For example, the communication function
𝛾 derived from 𝐺 includes the following synchronizations:

𝛾 (𝑎1 [heads, 𝑥]
�� 𝑏1 (heads, 𝑥)) = 𝑎𝑏1⟨heads, 𝑥⟩ ∀𝑥 ∈ Z

𝛾 (𝑎1 [tails, 𝑥]
�� 𝑏1 (tails, 𝑥)) = 𝑎𝑏1⟨tails, 𝑥⟩ ∀𝑥 ∈ Z

𝛾 (𝑐2 [heads]
�� 𝑏2 (heads)) = 𝑐𝑏2⟨heads⟩

𝛾 (𝑐2 [tails]
�� 𝑏2 (tails)) = 𝑐𝑏2⟨tails⟩

𝛾 (𝑏3 [win]
�� 𝑎3 (win)) = 𝑏𝑎3⟨win⟩

𝛾 (𝑏4 [lose]
�� 𝑎4 (lose)) = 𝑏𝑎4⟨lose⟩

To force the synchronization of output and input actions
associated to 𝐺 , we then simply disable any output, input,
and communication actions that are not in the image of 𝛾 by
means of encapsulation. The resulting complete implemen-
tation 𝑆 of 𝐺 is then as follows:

𝑆 := 𝜕𝐻 (𝑃 ∥ 𝑄 ∥ 𝑅)

Here, 𝜕𝐻 (. . .) denotes the encapsulation of the actions in the
set 𝐻 , and 𝑇 ∥ 𝑈 denotes the concurrent interleaving and
synchronization of actions in 𝑇 and 𝑈 (i.e. the merge of 𝑇
and 𝑈). In the case of 𝐺 , the set 𝐻 contains, e.g., the actions
𝑎2 [heads], 𝑏3 (lose), and 𝑏𝑎4⟨win⟩.

The operational semantics of ACP is defined in terms of
labelled transitions. The complete implementation 𝑆 of 𝐺
has, e.g., the following transitions (omitting intermediate
processes between transitions):

𝑆
𝑎𝑏1 ⟨heads,42⟩−−−−−−−−−−→

𝑐𝑏2 ⟨heads⟩−−−−−−−−→
𝑏𝑎3 ⟨win⟩−−−−−−−→ 𝑆

𝑆
𝑎𝑏1 ⟨tails,5⟩−−−−−−−−→

𝑐𝑏5 ⟨heads⟩−−−−−−−−→
𝑏𝑎6 ⟨lose⟩−−−−−−−→ ✓

Here, ✓ denotes succesful termination.
Note that the processes 𝑃 ,𝑄 , and 𝑅 are correct implementa-

tions for the participants in𝐺 , in the sense that they respect
the causality between exchanges in 𝐺 (a participant may
not output before a preceding input), and that they account
for each possible label when doing an input action. Let us
consider what happens if we were to use alternative imple-
mentations 𝑄 ′ and 𝑅′ of 𝑏 and 𝑐 in 𝐺 , respectively. In this

case, the implementation of 𝑏 only accounts for the case in
which 𝑎 wins, and 𝑐 is implemented as a single-sided coin.

𝑄 ′ :=
∑

𝑥 ∈Z 𝑏1 (heads, 𝑥) . 𝑏2 (heads) . 𝑏3 [win] . 𝑄 ′

+∑
𝑥 ∈Z 𝑏1 (tails, 𝑥) . 𝑏5 (tails) . 𝑏7 [win] . 𝑄 ′

𝑅′ := 𝑐2 [heads] . 𝑅′ + 𝑐5 [heads]
𝑆 ′ := 𝜕𝐻 (𝑃 ∥ 𝑄 ′ ∥ 𝑅′)

In case 𝑎 chooses “heads”, things proceed normally, since
the coin will indeed land on “heads”:

𝑆 ′
𝑎𝑏1 ⟨heads,42⟩−−−−−−−−−−→

𝑐𝑏2 ⟨heads⟩−−−−−−−−→
𝑏𝑎3 ⟨win⟩−−−−−−−→ 𝑆 ′

However, if 𝑎 chooses “tails”,𝑏 does not account for receiving
“heads”, so the process transitions to a deadlock state (𝛿)
which has no further transitions:

𝑆 ′
𝑎𝑏1 ⟨tails,5⟩−−−−−−−−→ 𝛿

Note that while 𝑄 ′ is an incorrect implementation of 𝑏 in 𝐺
(it does not account for all possible labels it could receive
from 𝑐), 𝑅′ is a correct implementation of 𝑐 in 𝐺 : an imple-
mentation may provide only some of the labels it may send.

Current and Future Work. We are currently developing
methods of verifying the correctness of participant imple-
mentations by means of model checking. The labelled transi-
tion system of ACP is suitable for model checking with the
modal 𝜇-calculus (L𝜇) [6]: in the mCRL2 toolset, L𝜇’s modali-
ties say that given sequences of actions can or must happen,
and fixpoint operators enable reasoning about infinite loops
of actions. We are working on deriving L𝜇 formulas from
global types to verify, e.g., protocol fidelity and deadlock
freedom of arbitrary participant implementations. The work
by Lange and Yoshida on generating L𝜇 formulas from ses-
sion types [7] may provide us with a headstart. Scalas and
Yoshida’s approach of model checking MPST in mCRL2 [8]
is also related, but they focus on types instead of implemen-
tations.

In the future, we would like to automate our developments
by developing a toolset using, e.g., the metaprogramming
language Rascal [5]. Message-passing in MPST is intended
to be asynchronous, whereas communication in ACP is inher-
ently synchronous. We are considering methods of modelling
asynchronous communication in ACP, such as through out-
put buffers. We also exploring ways of modelling delegation:
the ability to pass channel endpoints between participants.

An important aspect of MPST is the expressivity of global
types, i.e. the implementability of global types in a given
approach. Interestingly, usual approaches based on typing
and local projection do not support our running example.
Based on this evidence, we intend to investigate theoretical
results that delineate the expressivity of our approach.

Acknowledgements
We thank the reviewers for their detailed feedback, which
has been very useful to prepare our talk at the workshop.

Towards Practical Protocol Verification
via Minimal Orchestration in ACP AGERE, 2021, Chicago, Illinois, USA

References
[1] J. A. Bergstra and J. W. Klop. Process algebra for synchronous com-

munication. Information and Control, 60(1):109–137, January 1984.
doi:10.1016/S0019-9958(84)80025-X.

[2] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux,
Thomas Neele, Erik P. de Vink, Wieger Wesselink, Anton Wijs, and Tim
A. C. Willemse. The mCRL2 Toolset for Analysing Concurrent Systems.
In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 21–39, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-17465-1_2.

[3] Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis
of Communicating Systems. MIT Press, Cambridge, MA, USA, August
2014.

[4] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. Journal of the ACM, 63(1), March 2016.
doi:10.1145/2827695.

[5] Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In 2009
Ninth IEEE International Working Conference on Source Code Analysis
and Manipulation, pages 168–177, September 2009. doi:10.1109/SCAM.
2009.28.

[6] Dexter Kozen. Results on the propositional 𝜇-calculus. Theoretical
Computer Science, 27(3):333–354, January 1983. doi:10.1016/0304-
3975(82)90125-6.

[7] Julien Lange and Nobuko Yoshida. Characteristic Formulae for Session
Types. In Marsha Chechik and Jean-François Raskin, editors, Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science, pages 833–850, Berlin, Heidelberg, 2016. Springer.
doi:10.1007/978-3-662-49674-9_52.

[8] Alceste Scalas and Nobuko Yoshida. Less is more: Multiparty session
types revisited. Proceedings of the ACM on Programming Languages,
3(POPL):30:1–30:29, January 2019. Revised, extended version at https:
//www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf. doi:
10.1145/3290343.

https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/2827695
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-662-49674-9_52
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343

	References

