
Asynchronous Functional Sessions:
Cyclic and Concurrent

Bas van den Heuvel
(joint work with Jorge A. Pérez)

University of Groningen, The Netherlands

EXPRESS/SOS 2022, 12 September 2022

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 1 / 15

Overview

Curry-Howard correspondences between linear logic and session types:
a solid foundation for message-passing concurrency.

Pros: Deadlock-freedom by typing and clear connections with
functional languages with concurrency. Cons: Limited expressiveness.

Much interest in increasing the expressiveness of session-typed
π-calculi. We seek to transfer these gains to the functional setting.

Here: Concurrent GV (CGV), a new λ-calculus with sessions.

Solid design basis: APCP, an expressive session-typed π-calculus.
Main features: asynchrony, arbitrary network topologies.

CGV’s type system ensures session fidelity and communication safety,
but not deadlock-freedom.

An operationally correct translation from CGV into APCP.
Transfer deadlock-freedom to (a subset of) well-typed CGV programs.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 2 / 15

CGV Novelties

Three intertwined novelties that set CGV apart from its predecessors.

λsess (Gay and Vasconcelos, 2010);
GV (Wadler, 2012);
EGV (Fowler, Lindley, Morris and Decova, 2019);
PGV (Kokke and Dardha, 2021).

Asynchronous communication:
CGV uses buffers such that outputs are non-blocking.

Configurations of threads in arbitrary topologies:
CGV allows cyclic thread configurations.

Highly concurrent evaluation strategy:
CGV evaluates functions and their parameters concurrently.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 3 / 15

CGV by example

CGV λsess GV EGV PGV

Communication

Topologies

Deadlock-freedom

Evaluation

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 4 / 15

CGV by example Asynchronous communication

(νxy)(νvw)

(
let x ′ = send (u, x) in

let (q, v ′) = recv v in q

∣∣∣∣∣
∣∣∣∣∣ letw ′ = send (q′,w) in

let (u′, y ′) = recv y in u′

)

In CGV, communication is asynchronous:
the messages sent on x and on w are placed in buffers.

Messages are read from the buffers with the recvs on v and on y .

Under synchronous communication, this program is deadlocked.

CGV λsess GV EGV PGV

Communication Async. Async. Sync. Async. Sync.

Topologies

Deadlock-freedom

Evaluation

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 5 / 15

CGV by example Thread configuration topologies

(νxy)(νvw)

(
let (u, x ′) = recv x in

let v ′ = send (q, v) in ()

∣∣∣∣∣
∣∣∣∣∣ let y ′ = send (u′, y) in

let (q′,w ′) = recvw in ()

)

Two sessions and two threads that are cyclically connected.

The program is deadlock-free:
first the send on y and recv on x , then the send on v and recv on w .

Well-typed in CGV, guaranteed deadlock-free via APCP.

CGV λsess GV EGV PGV

Communication Async. Async. Sync. Async. Sync.

Topologies Cyclic Cyclic Tree Tree Cyclic

Deadlock-freedom APCP None Typing Typing Typing

Evaluation

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 6 / 15

CGV by example A highly concurrent evaluation strategy

(
λx . let (u, y) = recv y in

let x = send (u, x) in ()

) (
send (v , z)

)
In CGV, a function and its parameters are evaluated concurrently:
no restriction on the order of the recv on y and the send on z .

The evaluation strategy of CGV is reminiscent of call-by-future.

Under call-by-value (CbV) strategies the function on x can only be

applied after evaluating the send on z , blocking the recv on y .

CGV λsess GV EGV PGV

Communication Async. Async. Sync. Async. Sync.

Topologies Cyclic Cyclic Tree Tree Cyclic

Deadlock-freedom APCP None Typing Typing Typing

Evaluation Concur. CbV CbV CbV CbV

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 7 / 15

CGV by example Higher-order message-passing

(νxy)

let (v ,w) = new in

let x ′ = send
(
send (u,w) , x

)
in

let (u′, v ′) = recv v in u′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ let (s, y ′) = recv y in s


→∗ (νvw)

(
let (u′, v ′) = recv v in u′

∣∣∣∣∣∣ send (u,w)
)

Using higher-order message-passing, threads can send whole terms.

The left thread sends to the right an output on a new channel.

After receiving the output, the right thread executes it, to be

received by the left thread.

In prior works, only values can be sent (e.g., variables and functions).

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 8 / 15

CGV Type system for Session Fidelity and Communication Safety

CGV is a typed calculus, with functional types and session types.

x : !(T ⊸ (1× T)) . S ⊢ send (λz . ((), z), x) : S

Typing ensures session fidelity and communication safety, but not
deadlock-freedom.

(νxy)(νvw)

(
let (u, x ′) = recv x in
let v ′ = send (u, v) in ()

∣∣∣∣∣∣∣∣ let (q,w ′) = recvw in
let y ′ = send (q, y) in ()

)

Well-typed in CGV, but not deadlock-free.

APCP to the rescue.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 9 / 15

APCP Asynchronous Priority-based Classical Processes

In recent work (ICE’21), we developed APCP: a session type system
for π-calculus processes.

Key features:
cyclic process networks, asynchronous communication, and recursion.

Follows and extends the Curry-Howard correspondences between
linear logic and session types. A very solid design basis for CGV.

Priorities on types are used to rule out circular dependencies in
processes (Kobayashi, 2006; Padovani, 2014; Dardha and Gay, 2018).

Key properties:
session fidelity, communication safety, and deadlock-freedom.

APCP is expressive enough for a decentralized analysis of Multiparty
Session Types (cf. our journal paper Sci. Comput. Program., 2022).

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 10 / 15

APCP Asynchronous Priority-based Classical Processes

Recall our first CGV example:

(νxy)(νvw)

(
let x ′ = send (u, x) in

let (q, v ′) = recv v in q

∣∣∣∣∣∣∣∣ letw ′ = send (q′,w) in
let (u′, y ′) = recv y in u′

)

Analogous example in APCP:

(νxy)(νvw)

(νax ′)(νbu)(x [a, b] | v(q′, v ′) . 0)

| (νcw ′)(νdq)(w [c , d] | y(u′, y ′) . 0)


Outputs are standalone and parallel, session order is maintained by

means of continuation-passing.

Deadlock-free in APCP due to asynchronous communication;
Deadlocked under synchronous communication.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 11 / 15

Translating CGV into APCP The translation

Terms and types translated:

JΓ ⊢ M : T Kz = JMKz ⊢ JΓK, z : JT K

For example, translation of pairs (M,N)—omitting types:

J(M,N)Kz = (νab)(νcd)(z [a, c] | b(e, b′).JMKe | d(f , d ′).JNKf)

The translations of M and N are not blocked by the output.

Additional inputs are required.

Translation of function abstraction λx .M:

Jλx .MKz = z(a, b) . (νcx)
(
(νef) a[c, e] | JMKb

)
Here, an additional output is required, to activate the function’s
parameter which is blocked by an input.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 12 / 15

Translating CGV into APCP Operational correspondence

The translation preserves well-typedness, up to priorities: we ignore
priorities for translations of CGV programs with cyclic dependencies.

The translation is operationally complete:
Reductions in CGV programs are mimicked by their
APCP translations.

We also desire operational soundness:
Any reductions in APCP should be reflected by source CGV programs.

However, APCP’s semantics is too eager for soundness.
We state soundness in terms of an alternative lazy semantics.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 13 / 15

Translating CGV into APCP Transference of deadlock-freedom

Our characterization of deadlock-freedom in CGV:
M is deadlock-free if JMKz is well-typed including priorities.

Those translations are deadlock-free in APCP, but only under the
standard semantics.

By analyzing the shapes of M and JMKz , we prove that the
translation is also deadlock-free under the lazy semantics.

Hence, deadlock-freedom in APCP transfers to CGV through
operational soundness.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 14 / 15

Summary

Concurrent GV: a new λ-calculus with sessions that features
asynchrony and cyclic thread configurations.
CGV’s type system ensures session fidelity and communication safety,
but not deadlock-freedom
A (typed) translation into APCP recovers deadlock-freedom for
(a subset of) well-typed CGV programs.

CGV λsess GV EGV PGV
Communication Async. Async. Sync. Async. Sync.
Topologies Cyclic Cyclic Tree Tree Cyclic
Deadlock-freedom APCP None Typing Typing Typing
Evaluation Concur. CbV CbV CbV CbV

Omitted technical details (see https://arxiv.org/abs/2208.07644):

CGV’s semantics with a runtime configuration layer:
buffers and threads.
Translation of CGV types into APCP types.
APCP’s lazy semantics for soundness of the translation.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 15 / 15

https://arxiv.org/abs/2208.07644

CGV semantics (selected rules)

Function application

(λx .M) N −→M⦃N/x⦄

Spawning a thread

F [spawn (M,N)]−→F [N] ∥ ♢M

Channel creation

F [new]−→ (νx [ε⟩y)(F [(x , y)])

Sending a message (structural congruence)

(νx [m⃗⟩y)(F [send (M, x)] ∥ C) ≡ (νx [M, m⃗⟩y)(F [x] ∥ C)

Receiving a message

(νx [m⃗,M⟩y)(F [recv x] ∥ C)−→ (νx [m⃗⟩y)(F [(M, y)] ∥ C)

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 16 / 15

Translation of CGV types into APCP types

JT × UK = (JT K

&

•)⊗ (JUK

&

•) JT ⊸ UK = (JT K ⊗ •)

&

JUK
J1K = •

J!T . SK = (JT K ⊗ •)
&

JSK J?T . SK = (JT K
&

•)⊗ JSK
J⊕{i :Ti}i∈I K = &{i :JTiK}i∈I J&{i :Ti}i∈I K = ⊕{i :JTiK}i∈I

JendK = •

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 17 / 15

APCP’s lazy semantics for soundness

Omitting branching/selection and closure rules:

(
↔
νyz)(x ↔ y | P)−→(x ,y)

L P{x/z}
(νxy)(x [a, b] | y(c , d) . P)−→·

L P{a/c , b/d}
(νxy)((νuv)(x ↔ u | v [a, b])

| (νwz)(y ↔ w | z(c , d) . P))−→·
L P{a/c , b/d}

P −→·
L Q =⇒ P −→L Q

P −→(x ,y)
L Q ∧ bcontx ,y (P) =⇒ P −→L Q

The predicate bcontx ,y (P) holds iff
P ≡ E [(νxa)(x ↔ y | (νcd)(c ↔ e | d [f , a]))] for some evaluation context E
implies P ≡ (νeg)Q for some Q.

Bas van den Heuvel (Groningen) Asynchronous Functional Sessions 12 September 2022 18 / 15

	CGV by example
	Asynchronous communication
	Thread configuration topologies
	A highly concurrent evaluation strategy
	Higher-order message-passing

	CGV
	Type system for Session Fidelity and Communication Safety

	APCP
	Asynchronous Priority-based Classical Processes

	Translating CGV into APCP
	The translation
	Operational correspondence
	Transference of deadlock-freedom

	Summary
	Appendix

