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Overview

Curry-Howard correspondences between linear logic and session types:
a solid foundation for message-passing concurrency.

Pros: Deadlock-freedom by typing and clear connections with
functional languages with concurrency. Cons: Limited expressiveness.

Much interest in increasing the expressiveness of session-typed
π-calculi. We seek to transfer these gains to the functional setting.

Here: Concurrent GV (CGV), a new λ-calculus with sessions.

Solid design basis: APCP, an expressive session-typed π-calculus.
Main features: asynchrony, arbitrary network topologies.

CGV’s type system ensures session fidelity and communication safety,
but not deadlock-freedom.

An operationally correct translation from CGV into APCP.
Transfer deadlock-freedom to (a subset of) well-typed CGV programs.
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CGV Novelties

Three intertwined novelties that set CGV apart from its predecessors.

λsess (Gay and Vasconcelos, 2010);
GV (Wadler, 2012);
EGV (Fowler, Lindley, Morris and Decova, 2019);
PGV (Kokke and Dardha, 2021).

Asynchronous communication:
CGV uses buffers such that outputs are non-blocking.

Configurations of threads in arbitrary topologies:
CGV allows cyclic thread configurations.

Highly concurrent evaluation strategy:
CGV evaluates functions and their parameters concurrently.
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CGV by example

CGV λsess GV EGV PGV

Communication

Topologies

Deadlock-freedom

Evaluation
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CGV by example Asynchronous communication

(νxy)(νvw)

(
let x ′ = send (u, x) in

let (q, v ′) = recv v in q

∣∣∣∣∣
∣∣∣∣∣ letw ′ = send (q′,w) in

let (u′, y ′) = recv y in u′

)

In CGV, communication is asynchronous:
the messages sent on x and on w are placed in buffers.

Messages are read from the buffers with the recvs on v and on y .

Under synchronous communication, this program is deadlocked.

CGV λsess GV EGV PGV

Communication Async. Async. Sync. Async. Sync.

Topologies

Deadlock-freedom

Evaluation
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CGV by example Thread configuration topologies

(νxy)(νvw)

(
let (u, x ′) = recv x in

let v ′ = send (q, v) in ()

∣∣∣∣∣
∣∣∣∣∣ let y ′ = send (u′, y) in

let (q′,w ′) = recvw in ()

)

Two sessions and two threads that are cyclically connected.

The program is deadlock-free:
first the send on y and recv on x , then the send on v and recv on w .

Well-typed in CGV, guaranteed deadlock-free via APCP.

CGV λsess GV EGV PGV

Communication Async. Async. Sync. Async. Sync.

Topologies Cyclic Cyclic Tree Tree Cyclic

Deadlock-freedom APCP None Typing Typing Typing

Evaluation
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CGV by example A highly concurrent evaluation strategy

(
λx . let (u, y) = recv y in

let x = send (u, x) in ()

) (
send (v , z)

)
In CGV, a function and its parameters are evaluated concurrently:
no restriction on the order of the recv on y and the send on z .

The evaluation strategy of CGV is reminiscent of call-by-future.

Under call-by-value (CbV) strategies the function on x can only be

applied after evaluating the send on z , blocking the recv on y .

CGV λsess GV EGV PGV

Communication Async. Async. Sync. Async. Sync.

Topologies Cyclic Cyclic Tree Tree Cyclic

Deadlock-freedom APCP None Typing Typing Typing

Evaluation Concur. CbV CbV CbV CbV
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CGV by example Higher-order message-passing

(νxy)

let (v ,w) = new in

let x ′ = send
(
send (u,w) , x

)
in

let (u′, v ′) = recv v in u′

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ let (s, y ′) = recv y in s


→∗ (νvw)

(
let (u′, v ′) = recv v in u′

∣∣∣∣∣∣ send (u,w)
)

Using higher-order message-passing, threads can send whole terms.

The left thread sends to the right an output on a new channel.

After receiving the output, the right thread executes it, to be

received by the left thread.

In prior works, only values can be sent (e.g., variables and functions).
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CGV Type system for Session Fidelity and Communication Safety

CGV is a typed calculus, with functional types and session types.

x : !( T ⊸ (1× T ) ) . S ⊢ send (λz . ((), z), x) : S

Typing ensures session fidelity and communication safety, but not
deadlock-freedom.

(νxy)(νvw)

(
let (u, x ′) = recv x in
let v ′ = send (u, v) in ()

∣∣∣∣∣∣∣∣ let (q,w ′) = recvw in
let y ′ = send (q, y) in ()

)

Well-typed in CGV, but not deadlock-free.

APCP to the rescue.
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APCP Asynchronous Priority-based Classical Processes

In recent work (ICE’21), we developed APCP: a session type system
for π-calculus processes.

Key features:
cyclic process networks, asynchronous communication, and recursion.

Follows and extends the Curry-Howard correspondences between
linear logic and session types. A very solid design basis for CGV.

Priorities on types are used to rule out circular dependencies in
processes (Kobayashi, 2006; Padovani, 2014; Dardha and Gay, 2018).

Key properties:
session fidelity, communication safety, and deadlock-freedom.

APCP is expressive enough for a decentralized analysis of Multiparty
Session Types (cf. our journal paper Sci. Comput. Program., 2022).
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APCP Asynchronous Priority-based Classical Processes

Recall our first CGV example:

(νxy)(νvw)

(
let x ′ = send (u, x) in

let (q, v ′) = recv v in q

∣∣∣∣∣∣∣∣ letw ′ = send (q′,w) in
let (u′, y ′) = recv y in u′

)

Analogous example in APCP:

(νxy)(νvw)

(νax ′)(νbu)( x [a, b ] | v(q′, v ′ ) . 0)

| (νcw ′)(νdq)( w [c , d ] | y(u′, y ′ ) . 0)


Outputs are standalone and parallel, session order is maintained by

means of continuation-passing.

Deadlock-free in APCP due to asynchronous communication;
Deadlocked under synchronous communication.
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Translating CGV into APCP The translation

Terms and types translated:

JΓ ⊢ M : T Kz = JMKz ⊢ JΓK, z : JT K

For example, translation of pairs (M,N)—omitting types:

J(M,N)Kz = (νab)(νcd)( z [a, c] | b(e, b′).JMKe | d(f , d ′).JNKf )

The translations of M and N are not blocked by the output.

Additional inputs are required.

Translation of function abstraction λx .M:

Jλx .MKz = z(a, b) . (νcx)
(
(νef ) a[c, e] | JMKb

)
Here, an additional output is required, to activate the function’s
parameter which is blocked by an input.
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Translating CGV into APCP Operational correspondence

The translation preserves well-typedness, up to priorities: we ignore
priorities for translations of CGV programs with cyclic dependencies.

The translation is operationally complete:
Reductions in CGV programs are mimicked by their
APCP translations.

We also desire operational soundness:
Any reductions in APCP should be reflected by source CGV programs.

However, APCP’s semantics is too eager for soundness.
We state soundness in terms of an alternative lazy semantics.
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Translating CGV into APCP Transference of deadlock-freedom

Our characterization of deadlock-freedom in CGV:
M is deadlock-free if JMKz is well-typed including priorities.

Those translations are deadlock-free in APCP, but only under the
standard semantics.

By analyzing the shapes of M and JMKz , we prove that the
translation is also deadlock-free under the lazy semantics.

Hence, deadlock-freedom in APCP transfers to CGV through
operational soundness.
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Summary

Concurrent GV: a new λ-calculus with sessions that features
asynchrony and cyclic thread configurations.
CGV’s type system ensures session fidelity and communication safety,
but not deadlock-freedom
A (typed) translation into APCP recovers deadlock-freedom for
(a subset of) well-typed CGV programs.

CGV λsess GV EGV PGV
Communication Async. Async. Sync. Async. Sync.
Topologies Cyclic Cyclic Tree Tree Cyclic
Deadlock-freedom APCP None Typing Typing Typing
Evaluation Concur. CbV CbV CbV CbV

Omitted technical details (see https://arxiv.org/abs/2208.07644):

CGV’s semantics with a runtime configuration layer:
buffers and threads.
Translation of CGV types into APCP types.
APCP’s lazy semantics for soundness of the translation.
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CGV semantics (selected rules)

Function application

(λx .M) N −→M⦃N/x⦄

Spawning a thread

F [spawn (M,N)]−→F [N] ∥ ♢M

Channel creation

F [new]−→ (νx [ε⟩y)(F [(x , y)])

Sending a message (structural congruence)

(νx [m⃗⟩y)(F [send (M, x)] ∥ C ) ≡ (νx [M, m⃗⟩y)(F [x ] ∥ C )

Receiving a message

(νx [m⃗,M⟩y)(F [recv x ] ∥ C )−→ (νx [m⃗⟩y)(F [(M, y)] ∥ C )
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Translation of CGV types into APCP types

JT × UK = (JT K

&

•)⊗ (JUK

&

•) JT ⊸ UK = (JT K ⊗ •)

&

JUK
J1K = •

J!T . SK = (JT K ⊗ •)
&

JSK J?T . SK = (JT K
&

•)⊗ JSK
J⊕{i :Ti}i∈I K = &{i :JTiK}i∈I J&{i :Ti}i∈I K = ⊕{i :JTiK}i∈I

JendK = •
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APCP’s lazy semantics for soundness

Omitting branching/selection and closure rules:

(
↔
νyz)(x ↔ y | P)−→(x ,y)

L P{x/z}
(νxy)(x [a, b] | y(c , d) . P)−→·

L P{a/c , b/d}
(νxy)((νuv)(x ↔ u | v [a, b])

| (νwz)(y ↔ w | z(c , d) . P))−→·
L P{a/c , b/d}

P −→·
L Q =⇒ P −→L Q

P −→(x ,y)
L Q ∧ bcontx ,y (P) =⇒ P −→L Q

The predicate bcontx ,y (P) holds iff
P ≡ E [(νxa)(x ↔ y | (νcd)(c ↔ e | d [f , a]))] for some evaluation context E
implies P ≡ (νeg)Q for some Q.
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